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Let S be a compact Hausdorff space, and let E be a normed space over the
reals. Let C(S; E) be the linear space of all E-valued continuous functions Ion S
with the uniform norm

IIIII = sup{llf(t)ll: t E S}.

When E = iR, the Weierstrass-Stone Theorem describes the uniform closure of a
subalgebra of C(S; IR). We extend this classical result in two ways: we admit
vector-valued functions and describe the uniform closure of arbitrary subsets of
C(S; E). The classical Weierstrass-Stone Theorem is obtained as a corollary,
without Zorn's Lemma.n 1'194 Ac"demic Press, Inc.

INTRODUCTION

Let S be a compact Hausdorff space, and let C(S; IR) be the Banach
space of all continuous real-valued functions I on S equipped with the
sup-norm

11/11 = sup{l/(t)l;t E S}.

Let A c C(S; IR) be a subalgebra, i.e., a subset such that! + g, Ig, and
AI belong to A, for all I, g E A and A E IR. Let us assume that A
contains the constant functions and is separating over S, i.e., given x 1:- y
in S, there is some I E A such that I(x) 1:- I( y). The classical Weier
strass-Stone Theorem states that under this hypothesis the subalgebra A
is dense in C(S; IR): that is, for every f E C(S; IR) and every E > 0, there is
some g E A such that II! - gil < E. One generalization of this result is the
following: suppose We C(S; IR) is a linear subspace such that fw E W for
every I E A and W E W, where A is a subalgebra of C(S; IR), i.e., W is an
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A-module. Assume that A is separating over S and, for each XES, there
is some w E W such that w(x) *- O. Then W is dense in C(S; IR). (See
Nachbin [9].) In 1976, S. Machado discovered an elementary proof of this
result on A-modules. In fact, he showed that for any A-module We C
(S; IR) and for any f E C(S; IR),

dist(f; W) = sup dist(f(x); W(x»)
XES

whenever A is separating over S. For his proof, see ProIIa [11, pp. 4-10].
In fact, Machado proved a similar formula for the case that A is not
separating and, using a transfinite argument, applied it to give a new proof
of Bishop's generalized Weierstrass-Stone Theorem. (See Machado [8] or
Burckel [2].) In 1984, T. J. Ransford [12] gave an extremely simple proof of
Machado's result, using Zorn's Lemma. Using the notation of multipliers
of a subset We C(S; IR), that was introduced for convex cones by Feyel
and De La Pradelle [6], Chao-Lin extended Ransford's argument to
arbitrary subsets of C(S; IR). (See [3].)

The purpose of this paper is to revise Machado's proof of the
Weierstrass-Stone Theorem to extend it to the case of arbitrary subsets
We C(S; IR). A comparison of our proof with Machado's original proof,
which appears in ProIIa [11, pp. 4-10], shows that very little had to be
changed. What prompted us to write it, was a desire to have a proof of the
Weierstrass-Stone Theorem for arbitrary subsets of C(S; IR), that would
not use Zorn's Lemma. The main tools are two results due to R. I. Jewett
[7]. The first one is a polynomial approximation result which is a special
case of Weierstrass Theorem. However, its direct proof is very simple: it
depends only on Bernoulli's inequality. (See Lemma 2 of Jewett [7].) The
second one is the fact that the closure of the set of multipliers of W (see
Definition 2 below) is a lattice. This also has an elementary proof, albeit
much more complicated. (See Theorem 1 of Jewett [7].) With these two
results, we "approximate" the characteristic functions of neighborhoods of
points: see the crucial Lemma 3 below. It is the analogue of Lemma 1.3
[11, p. 4] in Machado's proof of the Weierstrass-Stone Theorem. See also
the analogous Lemma 1 of Brosowski and Deutsch [1], which is the
essential step of their elementary proof of the classical Weierstrass-Stone
Theorem. Notice that their proof is also free from the use of Zorn's
Lemma. Finally, we build a partition of unity, using multipliers. For this
purpose we use the method employed by Rudin (see Theorem 2.13 of
Rudin [13]): it allows us to use only two kinds of operations: given two
multipliers <p and c/!, form (1 - <p) and <pc/!. These two operations were
singled out by von Neumann as the most natural when dealing with a
Weierstrass-Stone Theorem for sets of elements of C(S; [0,1]). (See von
Neumann [14, pp. 93-94, 15 ] and Jewett [7].)
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Throughout this paper S is a non-empty compact Hausdorff space and
E is a non-trivial real or complex normed space. C(S; E) is the linear
space of all continuous functions from S into E, equipped with the
supremum norm

I/fl/ = sup{llf(x) 1/; XES}.

When E = IR, we denote by C(S; [0, 1]) the subset of C(S; IR) consisting of
those functions from S into the unit interval [0, 1] c IR. Following Jewett
[7] we state the following definition.

DEFINITION 1. A non-empty subset M c C(S; [0,1]) is said to have
property V, if

0) cp EM implies 1 - cp belongs to M;

(2) cp E M and l/J E M implies cpl/J E M.

Following Feyel and De La Pradelle [6) and Chao-Lin [3), we state our
next definition.

DEFINITION 2. Let W c C(S; E) be a non-empty subset. A function
cp E C(S; [0, 1)) is called a multiplier of W if cp f + (I - cp)g belongs to W,
for every pair, f and g, of elements of W.

Let M be the set of all multipliers of W. Clearly, M satisfies condition
(1) of Definition 1. The identity

(cpl/J)f+ (1- cpr/J)g = cp[r/Jf+ (1 -l/J)g] + (1 - cp)g,

shows that M satisfies condition (2) as well. Hence M has property V.

DEFINITION 3. A subset Xc C(S; IR) is a said to separate the points of
S if, given any two distinct points, sand t, of S, there is a function cp E X
such that cp( s) *" cp(t).

Our first two lemmas are taken from Jewett [7].

LEMMA 1. Let 0 < a < b < 1 and 0 < D < 1/2 be given. There exists a
polynomial p(x) = (I - x m

)", such that

(1) p(t) > 1 - 8, for all 0 ~ t ~ a,

(2) pet} < 0, for all b ~ t ~ 1.

Proof See Lemma 2 of Jewett [7]. I
LEMMA 2. If Me C(S; [0,1)) has property V, and cp and I/J belong to M,

then max(cp, l/J) belongs to the uniform closure of M.
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Proof See Theorem 1 of Jewett [7]. Just notice that the uniform
closure of M in C(S; [0, I)) has property V too. I

In our next lemma we "approximate" the characteristic functions of
open neighborhoods. It is the analogue of Lemma 1.3 of Machado's proof
of the Weierstrass-Stone Theorem (Lemma 1.3 of Prolla [11, p. 4], and of
Lemma 1 of Brosowski and Deutsch [I].

LEMMA 3. Let Me C(S; [0, I)) be a non-empty separating subset with
property V. Let XES and let N be an open neighborhood of x in S. There
exists an open neighborhood U of x, contained in N, such that, for each
o < 8 < 1/2, there is 'P EM such that

(1) 'P(t) > 1 - 8, for all t E U,

(2) 'P( t) < 8, for all t r£ N.

Proof Let K be the complement of N. For each t E K, there is
'P, EM such that 'P/(t) < 'P/(x). Choose real numbers a and b such that
'P,(t) < a < b < 'P/( x). By Lemma 1, there is a polynomial p/( x) = (1 
xm)n such that p/(x) < 1/4 for b s x s 1, and p/(x) > 3/4 for 0 s x sa.
Hence pJ'P/(x» < 1/4 and p/('P/(t» > 3/4. Let U(t) = {s E S; p/('P/(s»
> 3/ 4}. Then U(t) is an open neighborhood of t. By compactness, there
are t " , tm E K such that K c U(tl) u U(tz) u ... U U(tm)' For each
i = 1, , m let 'P,(s) = p/'P/(s), s E S. Clearly, 'PI E M, for all i =

I, ... ,m. Let I/I(s) = max(~I(s)"",'Pm(s», S E S.
By Lemma 2 the function ljJ belongs to the uniform closure of M.

Notice that l/J(x) < 1/4 and l/J(t) > 3/4, for all t E K. Define U = {s E S;
ljJ(s) < I/4}. Clearly, U is an open neighborhood of x in S. We claim that
U is contained in N. Indeed, if t r£ N, then t E K, and therefore l/J(t) >
3/4. Thus t r£ U, for all t r£ N.

If 0 < 8 < 1/2 is given, let p be a polynomial determined by Lemma 1,
applied to a = 1/4, b = 3/4, and 8/2. Let 71(S) = p(l/J(s», for s E S.
Since the uniform closure of M also has the property V, the function 71
belongs to the uniform closure of M. If t E U, then 71(t) > 1 - 8/2. If
t r£ N, then t E K and 71(t) < 8/2. Finally, choose 'P EM, such that
II'P - 7111 < 8/2. Then 'P satisfies (1) and (2). I

2. THE WEIERSTRASS-STONE THEOREM

Here is our Weierstrass-Stone theorem for arbitrary non-empty sub
sets.

THEOREM I. Let W be a non-empty subset of os; E) such that the set
M of all multipliers of W separates the points of S. Let f E C(S; E) and
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E > 0 be given. The following are equivalent:

(1) there is some g E W such that Ilf - gil < E;

(2) for each XES, there is some gx E W such that Ilf(x) - gJx )11 < E.

Proof Clearly (1) => (2). Conversely, assume (2) is true. For each
XES, there is some gx E W such that Ilf(x) - g)x)11 < e. Choose a real
number e(x) > 0 such that Ilf(x) - gJx)11 < e(x) < e. Then

N(x) = {t E S; IIf(t) - gAt)" < e(x)}

is an open neighborhood of x in S. Select a point x I E S arbitrarily. Let
K = S \ N( x I)' For each x E K, select an open neighborhood U( x) of x,
contained in N(x), by Lemma 3 applied to the set M of multipliers of W.
By compactness of K, there exists a finite set {x 2"'" x m } c K such that
K c U(x 2 ) u ... u U(x m ). Let e' = max{e(x); 1 ~ i ~ m}. Clearly, e' <
e. Let k = max{l/! - gIll, ... , II! - gm/I}, where we have defined g; = gt
for i = 1,2, ... , m. Choose now 0 < 0 < 1/2 so small that okm < e - £<
By Lemma 3, there are 'P2"'" 'Pm E M such that

'P;(x) > 1-0,

'P;(t) < 8,

for all i = 2,3, ... , m. Define

rfi2 = 'P2'

rfi3 = (1 - 'P2)'P3'

for all x E U(x;),

for all t $. N ( xJ '
(1)

(2)

Clearly, rfi; E M for all i = 2,3, ... , m. Now

rfi2 + ... + rfij = 1 - (1 - 'P 2) ... (1 - rfiJ,

can be easily verified by induction. Define

j = 2, ... ,m,

Then rfil EM and rfi l + rfi 2 + .. , +rfim = 1. Notice that

for all t $. N( x;), i = 1,2, ... , m. (3)

Indeed, if i ~ 2, then rfi;(t) ~ 'Pj(t) and (3) follows from (2). If i = 1,
and t $. N(x), then t E K. Hence t E U(x), for some j = 2, ... , m. By
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(1), 1 - 'Pit) < 0 and so

l/J](t) = (1 - 'Pj(t))· 0(1- 'P;(t)) < O.
l*j

Let g = l/JIgl + l/J2g2 + ... +l/Jmgm' Notice that

g = 'P2g2 + (1 - 'P2)['P3g3 + (1 - 'P3)

X ['P4g4 + ... + (1 - 'Pm-I)

X ['Pmgm + (1 - 'Pm)gl]"·]]·

Hence g E W. Let XES be given. Define I = (l ~ i ~ m; x E N(x)}
and J = (l ~ i ~ m; x $. N(x)}. Then

m

~ L l/J;( x)llf( x) - g;( x) II·
;~I

Now i E I implies Ilf(x) - g/x)11 < E(X) ~ E'. Hence

L.l/J;(x)llf(x) -g;(x)11 <E'Ll/J,(x) ~E'. (4)
;EI iEI

On the other hand, by (3), i E J implies l/J/x) < O. Hence

L l/Ji(x)llf(x) - g;(x)11 < okm < E - E'.
iEJ

(5)

From (4) and (5) we get Ilf(x) - g(x)11 < E. I
COROLLARY 1. Let W be a non-empty subset of C(S; E) such that the

set M of all multipliers of W separates the points of S. Let f E C(S; E) be
given. The following are equivalent:

(1) f belongs to the uniform closure of Win C(S; E);

(2) for each XES, the value f(x) belongs to the closure of the set
W(x) = (g(x); g E W} in E.

Proof This is immediate from Theorem 1. I
COROLLARY 2. Let W be a non-empty subset of C(S; E) such that

(l) for each pair of distinct points, x and y, of S there is some
multiplier 'P of W such that 'P(x) *- 'P( y);

(2) for each XES, VEE, and E > 0, there is some g E W such that
Ilg(x) - vII < E.
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Then W is dense in C(S; E).

Proof By (1), the set M of all multipliers of W is separating over S. By
(2), the set {g( x); g E W} is dense in E. Hence, every f E C( S; E) verifies
(2) of Corollary 1, and therefore belongs to the uniform closure of W in
C(S; E). I

For our next result we recall the definition of the distance of an element
f E OS; E) from W:

dist(f; W) = inf{llf - gil; g E W}.

THEOREM 2. Let W be a non-empty subset of C(S; E) such that the set
M of all multipliers of W separates the points of S. For each f E C(S; E)
there exists xES such that

dist(f; W) = dist(f(x); W(x».

Proof If dist(J; W) = 0, then dist( f( x); W( x» = 0 for every xES.
Suppose dist(J; W) = d > O. By contradiction assume that for each
point XES, dist(J(x); W(x» < d. Hence there is some gx E W such that
Ilf(x) - g)x)11 < d. Consequently, f and d > 0 satisfy condition (2) of
Theorem 1. By the equivalence between conditions (1) and (2) of Theorem
1, there is some g E W such that IIf - gil < d = dist(J; W), a contradic
tion. I

Our next result is a Weierstrass-Stone theorem for linear subspaces of
OS; E).

THEOREM 3. Let We C(S; E) be a vector subspace such that

A = (cp E C(S;rR); cpg E W, forallg E W}

separates the point of S, and for each XES, I' E E, and E > 0, there is
some g E W such that IIg(x) - I'll < E.

Then W is uniformly dense in OS; E).

Proof Notice that the set A is a subalgebra of OS; rR) containing the
constants. The set M = {cp E A; 0 .$ cp .$ l} is the set of all multipliers of
W. Given x *" y, by hypothesis there is some cp E A such that cp( x) *" cp( y ).
Since A is an algebra containing the constants, a standard argument shows
that we may assume that cp(x) = 0 and cp( y) = 1. Let IjJ = cp2/lIcp 211. Then
l/J E M, and ljJ(x) = 0, ljJ(y) = 1. Hence M separates the points of S, and
condition (1) of Corollary 2 is verified. By hypothesis, condition (2) of
Corollary 2 is verified also. I

Remark. The idea of defining the algebra A of multipliers of a vector
space We C(S; E) goes back to A. J. Ellis [5].
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COROLLARY 3. Let We OS; IR) be a I'ector subspace such that

A = {ip E C(S; IR); ipg E W, forallg E W}

separates the points of S. Assume that, for each XES there is some g E W
such that g(x) *" O.

Then W is uniformly dense in C(S; IR).

Proof Let XES and l' E [R; be given. Choose g E W such that
g(x) *" O. Then h(t) = (1'/g(X »g(t), t E S, belongs to Wand h(x) = 1'.

By Theorem 2, W is uniformly dense in C(S; [R;). I
Our next result is the classical Weierstrass-Stone for subalgebras of

C(S; [R;).

THEOREM 4. Let We C(S; [R;) be a subalgehra. Then W is uniformly
dense in C(S; IR) if, and only if, the following two conditions hold:

(1) for every pair of distinct points, x and y, of S, there is g E W such
that g(x) "* g(y),

(2) for el'ery XES, there is some g E W such that g(x) *" O.

Proof The conditions are easily seen to be necessary. Conversely,
assume that (I) and (2) hold. Let

A = {ip E C( S; [R;); ipg E W, for all g E W}.

Clearly, W being a subalgebra implies that W cA. By (1) the algebra W,
and a fortiori A, separates the points of S. It remains to apply Corollary 3.

I

3. ApPLICATIONS

EXAMPLE 1. Let S be a compact Hausdorff space, and let ip: S ~ [0, I]
be a continuous one-to-one mapping. Let W be the set of all functions f
of the form

f(t) = L. aijip(t)i(1 - ip(t))j,
i+jsn

t E S,

where each aij is a positive rational number, and n = 0, 1,2, .... Clearly,
ip is a multiplier of W, and therefore the set M of all multipliers of W
separates the points of S. On the other hand, W(x) =:> Q +' the set of all
positive rational numbers, for each XES. By Corollary 1, every function
f E C(S; IR) which is positive on S, i.e., f(x) ~ 0 for all xES, belongs to
the uniform closure of W.
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More generally, let W be the set of all functions f of the form (*),

where the coefficients aij are restricted by some condition, say aij E A, for
all i, j = 0,1,2, ... , where A is some subset of IR such that A + A cA.
Let B be the closure of A in IR. By Corollary 1, every function f E C(S; IR)
which maps 5 into B, i.e., f(S) c B, belongs to the uniform closure of W.
In the previous example, A = Q +' and then B = IR+.

A similar example is provided in the approximation of operator-valued
functions. Let !B(H) be the Banach space of all bounded linear operators
on a Hilbert space H. Let y( H) be the convex cone of all positice
operators, i.e., Y(H) consists of those T E.'B(H) such that (Tc, 1') ~ 0.
for every L' E H. Let W be the convex cone of all operator-valued
continuous functions of the form

p(t)= L t i (1-t)}p;j.
i+jsn

o ~ t ~ 1,

where each Pi} E.9'( H), n = 0, 1,2, .... Clearly, I{!{t) = t is a multiplier
of W, and W(x) =.9'( H), for all x E [0, 1]. By Corollary 1, every f E
C([O, 1]; gj(H» such that f(t> E.9'(H), for all t E [0,1], belongs to the
uniform closure of W in C([O, 1]; gj(H». When the interval [0,1] is
substituted by an arbitrary compact Hausdorff space S, we take W to be
the convex cone of all finite sums of functions of the form t E S = f(r)P,
where fE C(S;IR+) and P E.9'(H). Now, every I{! E C(S;[O, 1]) is a
multiplier of W, and W(t> =.9'(H), for every t E S. By Corollary 1, every
f(t> E OS; gj(H» such that fer) E.9'(H). for all t E S, belongs to the
uniform closure of W in C(S; B(H». Moreover, for every f E
C(S; 9J(H», by Theorem 2 there is some xES such that

dist(f;W) = inf Ilf(x) -PII = dist(f(x);.9'(H)).
PE.9'(H).

Let us now consider the approximation by compact operators. Let
%(H) be the linear subspace of all compact operators T E 9J( H), and let
:T( H) be the linear space of all finite-rank linear operators T E gj( H). It
is well known that the closure of :T(H) in gj(H) consists of %(H). Let
W = OS; IR) ® :T(H) be the linear subspace of C(S; 9J(H» consisting of
all finite sums of functions of the form s E S ~ f(s)T, where f E C(S; IR)
and T E :T(H). Clearly, every I{! E C(S; [0,1]) is a multiplier of W, and
W{t) = :T(H), for all t E S. By Corollary 1, every f E OS; L'iJ(H» such
that fCt) E %(H), for all t E 5, belongs to the uniform closure of W =

C(S; IR) ® :T(H). Moreover, by Theorem 2,

dist(f;C(S;%(H))) = sup inf Ilf(x) - Til
xES TE.'4'(H)

for every f E C(S; gj(H».
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EXAMPLE 2. We can generalize the Weierstrass Theorem to any num
ber of dimensions. Indeed, let S be a compa'ct subset of some real normed
space E (finite or infinite dimensional). For each n = 1,2,3, ... , let
9"n( E) denote the vector space of all continuous n-homogeneous real
valued polynomials of finite type on E. An element of ,9"(£) is a finite
sum of functions of the form

p(t) = 'Pl(t) .,. 'Pn(t), tEE,

where each 'Pi is a continuous linear functional. Let 9"1I( E) be the vector
space of all constant real-valued functions. Let 9"( E) be the vector space
of all continuous polynomials of finite type on E. An element p E .9(E) is
by definition of the form

for some n = 0,1,2,3, ... , where each polynomial Pk E .9 k (£), k =

0,1, ... , n. Let A = {'P E C(S; IR); 'PP E .9(£), for all p E 9"(£)}. Clearly,
if 'P is the restriction to S of some element of the dual space E*, then
'P EA. By the Hahn-Banach Theorem, A is then separating over S. Since
.9( E) contains all the constant real-valued functions, it follows from
Theorem 2, that 9"(E) is dense in C(S; IR).

EXAMPLE 3. (Pelczynski [10)). Let S be a compact Hausdorff space
and let E be a normed space over IR. Let We C(S; E) be a polynomial
algebra, i.e., a vector subspace such that for each g, hEW and 'P* E E*
(E* is the dual of E) the mapping s ~ 'P*(g(s))f(s) belongs to W.

THEOREM 5. For any polynomial algebra We C(S; E), the fol/owing
are necessary and sufficient conditions for W to be dense in C(S; E):

(1) for any pair of distinct points, x and y, of S there is some g E W
such that g(x) "* g(y);

(2) for any XES, l' E E, and E > 0, there is some g E W such that
Ilg(x) - 1.'11 < E.

Proof The conditions are easily seen to be necessary. Conversely
assume (1) and (2) are true. Let

A = ('P E C(S; IR); 'Pg E W, for all g E W}.

If x"* yare given, choose g E W such that g( x) "* g( y). By the
Hahn-Banach theorem, there is some 'P* E E* such that 'P*(g(x))"*
'P*(g(y)). Let 'P(s) = 'P*(g(s)) for all s E S. Now, for each hEW, the
mapping 'P(s)h(s) = 'P*(g(s))h(s), s E S, belongs to W. Hence 'P E A
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and cp( x) "* cp( y), and so A is separating over S. It remains to apply
Theorem 3. I

Notice that, if the polynomial algebra W also satisfies the condition that
s >-+ cp*(g(s»v belongs to W, for every g E W, vEE, and cp* E E*, then
(2) is equivalent to

(3) for every XES, there is some g E W such that g( x) "* O.

In particular, if We C(S; E) is a polynomial algebra that separates the
points (condition (1)) and contains the constant mappings, then W is
uniformly dense.

If S is a compact subset of a real normed space G and E is another
normed space over IR, then g(G) @ E is such that its restriction to S is a
polynomial algebra in C(S; E) that separates the points of S and contains
the constant mappings. The elements g(G) @ E are called continuous
polynomials of finite type from G into E.

4. SIMULTANEOUS ApPROXIMATION AND INTERPOLATION

We can apply our Theorem 1 to get results on simultaneous approxima
tion and interpolation of vector-valued functions. Let us say that a subset
A c C(S; E) is an interpolating family for C(S; E) if, given any finite
subset F c S and any f E C(S; E), there exists g E A such that f(x) =

g(x) for all x E F.

THEOREM 6. Let A c OS; E) be an interpolating family such that the
set of multipliers ofA separates the points of S. Then, for every f E C(S; S),
every E > 0 and every finite subset F c S, there exists g E A such that
Ilf - gil < E and f(x) = g(x) for all x E F. In particular, A is uniformly
dense in C(S; E).

Proof Define W = (g E A; f(x) = g(x) for all x E F}. Since A is an
interpolating family, W"* 0. Now it is easy to verify that each multiplier
of A is also a multiplier of W. Hence, by Theorem 1, it suffices to show
that, for each XES, there exists gx E W such that Ilf(x) - g/x)11 < E.

Consider the finite set F U {x}. Since A is an interpolating family for
C(S; E), there exists gx E A such that f{t) = g)O for all t E F U {x}. In
particular, f(t) = g/t) for all t E F. Hence gx E W. On the other hand
f(x) = g)x) implies Ilf(x) - g)x)11 = 0 < E. By Theorem 1, there exists
g E W such that Ilf - gil < E, and g E W implies g E A and get) = f(t)
for all t E F. I

Remark. When E = ~, then the conclusion of Theorem 6 is true
under the hypothesis that A c C(S;~) is a dense linear subspace. See
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Deutsch [4]. This poses the question of finding dense linear subspaces of
OS; E) for which the conclusion of Theorem 6 is valid, i.e., for which
simultaneous approximation and interpolation is possible.

THEOREM 7. Let We C(S; E) he a linear suhspace such that

A = {'P 0 g; 'P E E*, g E W}

is dense in C(S; iii) and A ® E c W. Then, for every f E C(S; E), every
E > 0 and euery finite subset F c S, there exists g E W such that II f - gil < E

and f(x) = g(x) for all x E F.

Proof. Case 1. F = 0. By Theorem 5, the space C(S; iii) ® E is dense
in C(S; E). Hence there is some g E C(S; iii) ® E such that Ilf - gil <
E/2. Let

m

g = L hkl'k,
k ~ I

where hi E C(S; iii), Vi E E, i = 1, ... , m. Let 'PI"'" 'Pm E E* and
gL"'" gm E W be such that II'Pi 0 gi - hill < 0, where 0 > 0 has been
chosen so that oL:;:)iL'1 II < E/2. Then w = L:~I~ L('Pk 0 gk k\ belongs to
A ® E c Wand Ilw - fll < E.

Case 2. F = {XI"'" XI,} *- 0. We first remark that A is an interpolat
ing family for C(S; iii). Indeed, if we define T: OS; iii) -+ lli n by

for each g E C(S; iii), then by density of A and continuity of T, we have

T(C(S;IIi)) = T(A) c T(A) = T(A),

where the last equality is a consequence of the fact that T(A) is a linear
subspace of llin, because A is a linear subspace of OS; iii). Let a l , ... , an
E A be such that

l:s;i,j:s;n.

Choose 0> 0 so that DO + L:7~lllaill) <E. By Case 1, W is dense In

C(S; E). Hence there is some gl E W such that IIf - gill < D. Let

1 :s; i :s; n.
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Since A ® E c W, it follows that

11
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g2(X) = L. a;(x)l'"
j~ I

XES,

belongs to W. Notice that gix) = l'j for all 1 ~ j ~ n. Hence g(x) =

f(x), for all 1 ~ j ~ n, if g E W is defined to be gl + g2' On the other
hand,

11

IIf-gll<8+lIg2 11<8+8L:llaj ll<c. I
j~ I

COROLLARY 4. Let We OS; E) be a dense linear subspace such that
A ® E c W, where

A = {4' 0 g; 4' E E* , g E W}.

Then, simultaneous approximation and interpolation from W is possible.

Proof By Theorem 7, it suffices to show that A is dense in C(S; IK:).
Let f E C(S; IK:) and E > 0 be given. Choose vEE and 4' E E* such that
114'11 ~ 1 and 4'(u) = 1. Let g(x) = f(x)v, for all xES. Then, by density
of W, there is some w E W such that Ilw - gil < E. Let h = lp 0 w. Then
h E A and Ih(x) - f(x)1 = 14'(w(x)) - f(x)lp(c)l = IIp(w(x)) 
lp(J(x)v)1 = IIp(w(x) - g(x))1 ~ 114'11 . Ilw(x) - g(x)11 < c, for all XES.

I
COROLLARY 5. Let F and E be two real normed spaces, and let S c F be

a compact subset. Then, simultaneous approximation and interpolation
is possible from the space of continuous polynomials of finite type from F
into E.

Proof Let We C(S; E) be the restriction to S of the space .9(F) ® E.
(For the definition of 9(F) see Example 2.) Notice that A = {lp 0 g;
4' E E*, g E W} is the restriction of 9(F) to S. Hence A ® E c W. We
saw in Example 3 that the polynomial algebra W is dense in C(S; E). It
remains to apply the previous corollary. I

5. THE NON-SEPARATING CASE

A very simple modification of the proof of Lemma 3 yields the following
non-separating version of it.

LEMMA 4. Let M c C«S; [0, 1]) be a subset with property V. Let XES
and let N be an open neighborhood of [x l\.f in S. There exists an open
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neighborhood U of [x1 M, contained in N, such that, for each 0 < 8 < 1/2,
there is an element If' E M such that

(1) If'(t} > 1 - 8, for all t E U,

(2) If'(t) < 8, for all t $. N.

In the statement of Lemma 4 we have used the following notation. For
each XES, the set [X]M is the equivalence class of the point x for the
following equivalence relation: x == y (mod. M) if, and only if, If'( x) = If'( y),

for all If' EM. In the same way that Lemma 3 implies Theorem 1, Lemma
4 implies the following non-separating version of Theorem 1.

THEOREM 8. Let W be a non-empty subset C(S; E), and let M be the set
of all multipliers of W. Let f E C(S; E) and E > 0 be given. The following
statements are equivalent:

(1) there is some g E W such that Ilf - gil < E;

(2) for each XES, there is some gx E W such that Ilf(t} - gx(t}11 < E,

for all t E [x1 M.

Analogously, in the same way that Theorem 2 follows from Theorem 1,
the following result follows from Theorem 8.

THEOREM 9. Let W be a non-empty subset of C<S; E), and let M be the
set of all multipliers of W. For each f E C(S; E) there is some XES such
that

dist(f; W) = dist(f[x]M; W[X]M)'

In the statement above we have used the following notation: f[X]M
stands for the restriction of f to the compact subset [x 1M C S. Similarly,
W[x1 M denotes the set {g[x1 M; g E W} which is contained in the space
C([x1 M; E).
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