On the Weierstrass - Stone Theorem

JOÃO B. PROLLA

Departamento de Matemática, IMECC-UNICAMP, Caixa Postal 6065, 13081 Campinas, SP, Brazil

Communicated by Frank Deutsch

Received September 11, 1991; accepted in revised form May 17, 1993

Let S be a compact Hausdorff space, and let E be a normed space over the reals. Let C(S; E) be the linear space of all E-valued continuous functions f on S with the uniform norm

$$||f|| = \sup\{||f(t)||; t \in S\}.$$

When $E = \mathbb{R}$, the Weierstrass-Stone Theorem describes the uniform closure of a subalgebra of $C(S; \mathbb{R})$. We extend this classical result in two ways: we admit vector-valued functions and describe the uniform closure of arbitrary subsets of C(S; E). The classical Weierstrass-Stone Theorem is obtained as a corollary, without Zorn's Lemma. \oplus 1994 Academic Press, Inc.

INTRODUCTION

Let S be a compact Hausdorff space, and let $C(S; \mathbb{R})$ be the Banach space of all continuous real-valued functions f on S equipped with the sup-norm

$$||f|| = \sup\{|f(t)|; t \in S\}.$$

Let $A \,\subseteq C(S; \mathbb{R})$ be a *subalgebra*, i.e., a subset such that f + g, fg, and λf belong to A, for all $f, g \in A$ and $\lambda \in \mathbb{R}$. Let us assume that A contains the constant functions and is separating over S, i.e., given $x \neq y$ in S, there is some $f \in A$ such that $f(x) \neq f(y)$. The classical Weierstrass-Stone Theorem states that under this hypothesis the subalgebra A is dense in $C(S; \mathbb{R})$: that is, for every $f \in C(S; \mathbb{R})$ and every $\varepsilon > 0$, there is some $g \in A$ such that $||f - g|| < \varepsilon$. One generalization of this result is the following: suppose $W \subset C(S; \mathbb{R})$ is a linear subspace such that $fw \in W$ for every $f \in A$ and $w \in W$, where A is a subalgebra of $C(S; \mathbb{R})$, i.e., W is an

A-module. Assume that A is separating over S and, for each $x \in S$, there is some $w \in W$ such that $w(x) \neq 0$. Then W is dense in $C(S; \mathbb{R})$. (See Nachbin [9].) In 1976, S. Machado discovered an elementary proof of this result on A-modules. In fact, he showed that for any A-module $W \subset C$ $(S; \mathbb{R})$ and for any $f \in C(S; \mathbb{R})$,

$$dist(f; W) = \sup_{x \in S} dist(f(x); W(x))$$

whenever A is separating over S. For his proof, see Prolla [11, pp. 4–10]. In fact, Machado proved a similar formula for the case that A is not separating and, using a transfinite argument, applied it to give a new proof of Bishop's generalized Weierstrass-Stone Theorem. (See Machado [8] or Burckel [2].) In 1984, T. J. Ransford [12] gave an extremely simple proof of Machado's result, using Zorn's Lemma. Using the notation of multipliers of a subset $W \subset C(S; \mathbb{R})$, that was introduced for convex cones by Feyel and De La Pradelle [6], Chao-Lin extended Ransford's argument to arbitrary subsets of $C(S; \mathbb{R})$. (See [3].)

The purpose of this paper is to revise Machado's proof of the Weierstrass-Stone Theorem to extend it to the case of arbitrary subsets $W \subseteq C(S; \mathbb{R})$. A comparison of our proof with Machado's original proof. which appears in Prolla [11, pp. 4-10], shows that very little had to be changed. What prompted us to write it, was a desire to have a proof of the Weierstrass-Stone Theorem for *arbitrary* subsets of $C(S; \mathbb{R})$, that would not use Zorn's Lemma. The main tools are two results due to R. I. Jewett [7]. The first one is a polynomial approximation result which is a special case of Weierstrass Theorem. However, its direct proof is very simple: it depends only on Bernoulli's inequality. (See Lemma 2 of Jewett [7].) The second one is the fact that the closure of the set of multipliers of W (see Definition 2 below) is a lattice. This also has an elementary proof, albeit much more complicated. (See Theorem 1 of Jewett [7].) With these two results, we "approximate" the characteristic functions of neighborhoods of points: see the crucial Lemma 3 below. It is the analogue of Lemma 1.3 [11, p. 4] in Machado's proof of the Weierstrass-Stone Theorem. See also the analogous Lemma 1 of Brosowski and Deutsch [1], which is the essential step of their elementary proof of the classical Weierstrass-Stone Theorem. Notice that their proof is also free from the use of Zorn's Lemma. Finally, we build a partition of unity, using multipliers. For this purpose we use the method employed by Rudin (see Theorem 2.13 of Rudin [13]): it allows us to use only two kinds of operations: given two multipliers φ and ψ , form $(1 - \varphi)$ and $\varphi \psi$. These two operations were singled out by von Neumann as the most natural when dealing with a Weierstrass-Stone Theorem for sets of elements of C(S; [0, 1]). (See von Neumann [14, pp. 93–94, 15] and Jewett [7].)

1. DEFINITIONS AND LEMMAS

Throughout this paper S is a non-empty compact Hausdorff space and E is a non-trivial real or complex normed space. C(S; E) is the linear space of all continuous functions from S into E, equipped with the supremum norm

$$||f|| = \sup\{||f(x)||; x \in S\}.$$

When $E = \mathbb{R}$, we denote by C(S; [0, 1]) the subset of $C(S; \mathbb{R})$ consisting of those functions from S into the unit interval $[0, 1] \subset \mathbb{R}$. Following Jewett [7] we state the following definition.

DEFINITION 1. A non-empty subset $M \subset C(S; [0, 1])$ is said to have property V, if

(1)
$$\varphi \in M$$
 implies $1 - \varphi$ belongs to M ;

(2) $\varphi \in M$ and $\psi \in M$ implies $\varphi \psi \in M$.

Following Feyel and De La Pradelle [6] and Chao-Lin [3], we state our next definition.

DEFINITION 2. Let $W \subset C(S; E)$ be a non-empty subset. A function $\varphi \in C(S; [0, 1])$ is called a *multiplier* of W if $\varphi f + (1 - \varphi)g$ belongs to W, for every pair, f and g, of elements of W.

Let M be the set of all multipliers of W. Clearly, M satisfies condition (1) of Definition 1. The identity

$$(\varphi\psi)f + (1-\varphi\psi)g = \varphi[\psi f + (1-\psi)g] + (1-\varphi)g,$$

shows that M satisfies condition (2) as well. Hence M has property V.

DEFINITION 3. A subset $X \subset C(S; \mathbb{R})$ is a said to separate the points of S if, given any two distinct points, s and t, of S, there is a function $\varphi \in X$ such that $\varphi(s) \neq \varphi(t)$.

Our first two lemmas are taken from Jewett [7].

LEMMA 1. Let 0 < a < b < 1 and $0 < \delta < 1/2$ be given. There exists a polynomial $p(x) = (1 - x^m)^n$, such that

- (1) $p(t) > 1 \delta$, for all $0 \le t \le a$,
- (2) $p(t) < \delta$, for all $b \le t \le 1$.

Proof. See Lemma 2 of Jewett [7].

LEMMA 2. If $M \subset C(S; [0, 1])$ has property V, and φ and ψ belong to M, then $\max(\varphi, \psi)$ belongs to the uniform closure of M.

Proof. See Theorem 1 of Jewett [7]. Just notice that the uniform closure of M in C(S; [0, 1]) has property V too.

In our next lemma we "approximate" the characteristic functions of open neighborhoods. It is the analogue of Lemma 1.3 of Machado's proof of the Weierstrass–Stone Theorem (Lemma 1.3 of Prolla [11, p. 4], and of Lemma 1 of Brosowski and Deutsch [1].

LEMMA 3. Let $M \subset C(S; [0, 1])$ be a non-empty separating subset with property V. Let $x \in S$ and let N be an open neighborhood of x in S. There exists an open neighborhood U of x, contained in N, such that, for each $0 < \delta < 1/2$, there is $\varphi \in M$ such that

- (1) $\varphi(t) > 1 \delta$, for all $t \in U$,
- (2) $\varphi(t) < \delta$, for all $t \notin N$.

Proof. Let K be the complement of N. For each $t \in K$, there is $\varphi_t \in M$ such that $\varphi_i(t) < \varphi_i(x)$. Choose real numbers a and b such that $\varphi_i(t) < a < b < \varphi_i(x)$. By Lemma 1, there is a polynomial $p_i(x) = (1 - x^m)^n$ such that $p_i(x) < 1/4$ for $b \le x \le 1$, and $p_i(x) > 3/4$ for $0 \le x \le a$. Hence $p_i(\varphi_i(x)) < 1/4$ and $p_i(\varphi_i(t)) > 3/4$. Let $U(t) = \{s \in S; p_i(\varphi_i(s)) > 3/4\}$. Then U(t) is an open neighborhood of t. By compactness, there are $t_1, \ldots, t_m \in K$ such that $K \subset U(t_1) \cup U(t_2) \cup \cdots \cup U(t_m)$. For each $i = 1, \ldots, m$ let $\varphi_i(s) = p_{i_i}(\varphi_i(s), s \in S$. Clearly, $\varphi_i \in M$, for all $i = 1, \ldots, m$. Let $\psi(s) = \max(\varphi_1(s), \ldots, \varphi_m(s)), s \in S$.

By Lemma 2 the function ψ belongs to the uniform closure of M. Notice that $\psi(x) < 1/4$ and $\psi(t) > 3/4$, for all $t \in K$. Define $U = \{s \in S; \psi(s) < 1/4\}$. Clearly, U is an open neighborhood of x in S. We claim that U is contained in N. Indeed, if $t \notin N$, then $t \in K$, and therefore $\psi(t) > 3/4$. Thus $t \notin U$, for all $t \notin N$.

If $0 < \delta < 1/2$ is given, let p be a polynomial determined by Lemma 1, applied to a = 1/4, b = 3/4, and $\delta/2$. Let $\eta(s) = p(\psi(s))$, for $s \in S$. Since the uniform closure of M also has the property V, the function η belongs to the uniform closure of M. If $t \in U$, then $\eta(t) > 1 - \delta/2$. If $t \notin N$, then $t \in K$ and $\eta(t) < \delta/2$. Finally, choose $\varphi \in M$, such that $\|\varphi - \eta\| < \delta/2$. Then φ satisfies (1) and (2).

2. The Weierstrass-Stone Theorem

Here is our Weierstrass-Stone theorem for *arbitrary* non-empty subsets.

THEOREM 1. Let W be a non-empty subset of C(S; E) such that the set M of all multipliers of W separates the points of S. Let $f \in C(S; E)$ and

 $\varepsilon > 0$ be given. The following are equivalent:

(1) there is some $g \in W$ such that $||f - g|| < \varepsilon$;

(2) for each $x \in S$, there is some $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$.

Proof. Clearly $(1) \Rightarrow (2)$. Conversely, assume (2) is true. For each $x \in S$, there is some $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$. Choose a real number $\varepsilon(x) > 0$ such that $||f(x) - g_x(x)|| < \varepsilon(x) < \varepsilon$. Then

$$N(x) = \left\{ t \in S; \left\| f(t) - g_x(t) \right\| < \varepsilon(x) \right\}$$

is an open neighborhood of x in S. Select a point $x_1 \in S$ arbitrarily. Let $K = S \setminus N(x_1)$. For each $x \in K$, select an open neighborhood U(x) of x, contained in N(x), by Lemma 3 applied to the set M of multipliers of W. By compactness of K, there exists a finite set $\{x_2, \ldots, x_m\} \subset K$ such that $K \subset U(x_2) \cup \cdots \cup U(x_m)$. Let $\varepsilon' = \max\{\varepsilon(x_i); 1 \le i \le m\}$. Clearly, $\varepsilon' < \varepsilon$. Let $k = \max\{\|f - g_1\|, \ldots, \|f - g_m\|\}$, where we have defined $g_i = g_{x_i}$ for $i = 1, 2, \ldots, m$. Choose now $0 < \delta < 1/2$ so small that $\delta km < \varepsilon - \varepsilon'$. By Lemma 3, there are $\varphi_2, \ldots, \varphi_m \in M$ such that

$$\varphi_i(x) > 1 - \delta$$
, for all $x \in U(x_i)$, (1)

$$\varphi_i(t) < \delta, \qquad \text{for all } t \notin N(x_i), \qquad (2)$$

for all $i = 2, 3, \ldots, m$. Define

$$\begin{split} \psi_2 &= \varphi_2, \\ \psi_3 &= (1 - \varphi_2)\varphi_3, \\ & \cdots \\ \psi_m &= (1 - \varphi_2)(1 - \varphi_3) \cdots (1 - \varphi_{m-1})\varphi_m. \end{split}$$

Clearly, $\psi_i \in M$ for all i = 2, 3, ..., m. Now

$$\psi_2 + \cdots + \psi_j = 1 - (1 - \varphi_2) \cdots (1 - \psi_j), \quad j = 2, \dots, m,$$

can be easily verified by induction. Define

$$\psi_1=(1-\varphi_2)(1-\varphi_3)\cdots(1-\varphi_m).$$

Then $\psi_1 \in M$ and $\psi_1 + \psi_2 + \cdots + \psi_m = 1$. Notice that

$$\psi_i(t) < \delta, \quad \text{for all } t \notin N(x_i), i = 1, 2, \dots, m.$$
 (3)

Indeed, if $i \ge 2$, then $\psi_i(t) \le \varphi_i(t)$ and (3) follows from (2). If i = 1, and $t \notin N(x_i)$, then $t \in K$. Hence $t \in U(x_i)$, for some j = 2, ..., m. By

(1), $1 - \varphi_i(t) < \delta$ and so

$$\psi_1(t) = \left(1 - \varphi_j(t)\right) \cdot \prod_{i \neq j} \left(1 - \varphi_i(t)\right) < \delta.$$

Let $g = \psi_1 g_1 + \psi_2 g_2 + \cdots + \psi_m g_m$. Notice that

$$g = \varphi_2 g_2 + (1 - \varphi_2) \Big[\varphi_3 g_3 + (1 - \varphi_3) \\ \times \Big[\varphi_4 g_4 + \dots + (1 - \varphi_{m-1}) \\ \times \Big[\varphi_m g_m + (1 - \varphi_m) g_1 \Big] \dots \Big] \Big].$$

Hence $g \in W$. Let $x \in S$ be given. Define $I = \{1 \le i \le m; x \in N(x_i)\}$ and $J = \{1 \le i \le m; x \notin N(x_i)\}$. Then

$$\|f(x) - g(x)\| = \left\|\sum_{i=1}^{m} \psi_i(x)(f(x) - g_i(x))\right\|$$

$$\leq \sum_{i=1}^{m} \psi_i(x)\|f(x) - g_i(x)\|.$$

Now $i \in I$ implies $||f(x) - g_i(x)|| < \varepsilon(x_i) \le \varepsilon'$. Hence

$$\sum_{i \in I} \psi_i(x) \| f(x) - g_i(x) \| < \varepsilon' \sum_{i \in I} \psi_i(x) \le \varepsilon'.$$
(4)

On the other hand, by (3), $i \in J$ implies $\psi_i(x) < \delta$. Hence

$$\sum_{i\in J}\psi_i(x)\|f(x)-g_i(x)\|<\delta km<\varepsilon-\varepsilon'.$$
(5)

From (4) and (5) we get $||f(x) - g(x)|| < \varepsilon$.

COROLLARY 1. Let W be a non-empty subset of C(S; E) such that the set M of all multipliers of W separates the points of S. Let $f \in C(S; E)$ be given. The following are equivalent:

(1) f belongs to the uniform closure of W in C(S; E);

(2) for each $x \in S$, the value f(x) belongs to the closure of the set $W(x) = \{g(x); g \in W\}$ in E.

Proof. This is immediate from Theorem 1.

COROLLARY 2. Let W be a non-empty subset of C(S; E) such that

(1) for each pair of distinct points, x and y, of S there is some multiplier φ of W such that $\varphi(x) \neq \varphi(y)$;

(2) for each $x \in S$, $v \in E$, and $\varepsilon > 0$, there is some $g \in W$ such that $||g(x) - v|| < \varepsilon$.

Then W is dense in C(S; E).

Proof. By (1), the set M of all multipliers of W is separating over S. By (2), the set $\{g(x); g \in W\}$ is dense in E. Hence, every $f \in C(S; E)$ verifies (2) of Corollary 1, and therefore belongs to the uniform closure of W in C(S; E).

For our next result we recall the definition of the distance of an element $f \in C(S; E)$ from W:

$$dist(f; W) = inf\{||f - g||; g \in W\}.$$

THEOREM 2. Let W be a non-empty subset of C(S; E) such that the set M of all multipliers of W separates the points of S. For each $f \in C(S; E)$ there exists $x \in S$ such that

$$dist(f; W) = dist(f(x); W(x)).$$

Proof. If dist(f; W) = 0, then dist(f(x); W(x)) = 0 for every $x \in S$. Suppose dist(f; W) = d > 0. By contradiction assume that for each point $x \in S$, dist(f(x); W(x)) < d. Hence there is some $g_x \in W$ such that $||f(x) - g_x(x)|| < d$. Consequently, f and d > 0 satisfy condition (2) of Theorem 1. By the equivalence between conditions (1) and (2) of Theorem 1, there is some $g \in W$ such that ||f - g|| < d = dist(f; W), a contradiction.

Our next result is a Weierstrass-Stone theorem for *linear subspaces* of C(S; E).

THEOREM 3. Let $W \subset C(S; E)$ be a vector subspace such that

$$A = \{ \varphi \in C(S; \mathbb{R}); \, \varphi g \in W, \, \text{for all } g \in W \}$$

separates the point of S, and for each $x \in S$, $v \in E$, and $\varepsilon > 0$, there is some $g \in W$ such that $||g(x) - v|| < \varepsilon$.

Then W is uniformly dense in C(S; E).

Proof. Notice that the set A is a subalgebra of $C(S; \mathbb{R})$ containing the constants. The set $M = \{\varphi \in A; 0 \le \varphi \le 1\}$ is the set of all multipliers of W. Given $x \ne y$, by hypothesis there is some $\varphi \in A$ such that $\varphi(x) \ne \varphi(y)$. Since A is an algebra containing the constants, a standard argument shows that we may assume that $\varphi(x) = 0$ and $\varphi(y) = 1$. Let $\psi = \varphi^2 / ||\varphi^2||$. Then $\psi \in M$, and $\psi(x) = 0, \psi(y) = 1$. Hence M separates the points of S, and condition (1) of Corollary 2 is verified. By hypothesis, condition (2) of Corollary 2 is verified also.

Remark. The idea of defining the algebra A of multipliers of a vector space $W \subset C(S; E)$ goes back to A. J. Ellis [5].

COROLLARY 3. Let $W \subset C(S; \mathbb{R})$ be a vector subspace such that

 $A = \{ \varphi \in C(S; \mathbb{R}); \varphi g \in W, \text{ for all } g \in W \}$

separates the points of S. Assume that, for each $x \in S$ there is some $g \in W$ such that $g(x) \neq 0$.

Then W is uniformly dense in $C(S; \mathbb{R})$.

Proof. Let $x \in S$ and $v \in \mathbb{R}$ be given. Choose $g \in W$ such that $g(x) \neq 0$. Then h(t) = (v/g(x))g(t), $t \in S$, belongs to W and h(x) = v. By Theorem 2, W is uniformly dense in $C(S; \mathbb{R})$.

Our next result is the classical Weierstrass–Stone for *subalgebras* of $C(S; \mathbb{R})$.

THEOREM 4. Let $W \subset C(S; \mathbb{R})$ be a subalgebra. Then W is uniformly dense in $C(S; \mathbb{R})$ if, and only if, the following two conditions hold:

(1) for every pair of distinct points, x and y, of S, there is $g \in W$ such that $g(x) \neq g(y)$,

(2) for every $x \in S$, there is some $g \in W$ such that $g(x) \neq 0$.

Proof. The conditions are easily seen to be necessary. Conversely, assume that (1) and (2) hold. Let

$$A = \{ \varphi \in C(S; \mathbb{R}); \varphi g \in W, \text{ for all } g \in W \}.$$

Clearly, W being a subalgebra implies that $W \subset A$. By (1) the algebra W, and a fortiori A, separates the points of S. It remains to apply Corollary 3.

3. APPLICATIONS

EXAMPLE 1. Let S be a compact Hausdorff space, and let $\varphi: S \to [0, 1]$ be a continuous one-to-one mapping. Let W be the set of all functions f of the form

$$f(t) = \sum_{i+j \le n} a_{ij} \varphi(t)^{i} (1 - \varphi(t))^{j}, \quad t \in S, \quad (*)$$

where each a_{ij} is a positive rational number, and n = 0, 1, 2, ... Clearly, φ is a multiplier of W, and therefore the set M of all multipliers of Wseparates the points of S. On the other hand, $W(x) \supset Q_+$, the set of all positive rational numbers, for each $x \in S$. By Corollary 1, every function $f \in C(S; \mathbb{R})$ which is positive on S, i.e., $f(x) \ge 0$ for all $x \in S$, belongs to the uniform closure of W. More generally, let W be the set of all functions f of the form (*), where the coefficients a_{ij} are restricted by some condition, say $a_{ij} \in A$, for all i, j = 0, 1, 2, ..., where A is some subset of \mathbb{R} such that $A + A \subset A$. Let B be the closure of A in \mathbb{R} . By Corollary 1, every function $f \in C(S; \mathbb{R})$ which maps S into B, i.e., $f(S) \subset B$, belongs to the uniform closure of W. In the previous example, $A = Q_+$, and then $B = \mathbb{R}_+$.

A similar example is provided in the approximation of operator-valued functions. Let $\mathscr{B}(H)$ be the Banach space of all bounded linear operators on a Hilbert space H. Let $\mathscr{P}(H)$ be the convex cone of all *positive* operators, i.e., $\mathscr{P}(H)$ consists of those $T \in \mathscr{B}(H)$ such that $(Tv, v) \ge 0$, for every $v \in H$. Let W be the convex cone of all operator-valued continuous functions of the form

$$p(t) = \sum_{i+j \le n} t^{i} (1-t)^{j} P_{ij}, \qquad 0 \le t \le 1,$$

where each $P_{ij} \in \mathscr{P}(H)$, n = 0, 1, 2, ... Clearly, $\varphi(t) = t$ is a multiplier of W, and $W(x) = \mathscr{P}(H)$, for all $x \in [0, 1]$. By Corollary 1, every $f \in C([0, 1]; \mathscr{B}(H))$ such that $f(t) \in \mathscr{P}(H)$, for all $t \in [0, 1]$, belongs to the uniform closure of W in $C([0, 1]; \mathscr{B}(H))$. When the interval [0, 1] is substituted by an arbitrary compact Hausdorff space S, we take W to be the convex cone of all finite sums of functions of the form $t \in S \Rightarrow f(t)P$, where $f \in C(S; \mathbb{R}_+)$ and $P \in \mathscr{P}(H)$. Now, every $\varphi \in C(S; [0, 1])$ is a multiplier of W, and $W(t) = \mathscr{P}(H)$, for every $t \in S$. By Corollary 1, every $f(t) \in C(S; \mathscr{B}(H))$ such that $f(t) \in \mathscr{P}(H)$, for all $t \in S$, belongs to the uniform closure of W in C(S; B(H)). Moreover, for every $f \in C(S; \mathscr{B}(H))$, by Theorem 2 there is some $x \in S$ such that

$$\operatorname{dist}(f;W) = \inf_{P \in \mathscr{P}(H)} \|f(x) - P\| = \operatorname{dist}(f(x);\mathscr{P}(H)).$$

Let us now consider the approximation by *compact* operators. Let $\mathscr{R}(H)$ be the linear subspace of all compact operators $T \in \mathscr{B}(H)$, and let $\mathscr{F}(H)$ be the linear space of all *finite-rank* linear operators $T \in \mathscr{B}(H)$. It is well known that the closure of $\mathscr{F}(H)$ in $\mathscr{B}(H)$ consists of $\mathscr{R}(H)$. Let $W = C(S; \mathbb{R}) \otimes \mathscr{F}(H)$ be the linear subspace of $C(S; \mathscr{B}(H))$ consisting of all finite sums of functions of the form $s \in S \mapsto f(s)T$, where $f \in C(S; \mathbb{R})$ and $T \in \mathscr{F}(H)$. Clearly, every $\varphi \in C(S; [0, 1])$ is a multiplier of W, and $W(t) = \mathscr{F}(H)$, for all $t \in S$. By Corollary 1, every $f \in C(S; \mathscr{B}(H))$ such that $f(t) \in \mathscr{K}(H)$, for all $t \in S$, belongs to the uniform closure of $W = C(S; \mathbb{R}) \otimes \mathscr{F}(H)$. Moreover, by Theorem 2,

$$\operatorname{dist}(f; C(S; \mathscr{K}(H))) = \sup_{x \in S} \inf_{T \in \mathscr{K}(H)} ||f(x) - T||$$

for every $f \in C(S; \mathscr{B}(H))$.

EXAMPLE 2. We can generalize the Weierstrass Theorem to any number of dimensions. Indeed, let S be a compact subset of some real normed space E (finite or infinite dimensional). For each n = 1, 2, 3, ..., let $\mathcal{P}^n(E)$ denote the vector space of all continuous *n*-homogeneous realvalued polynomials of finite type on E. An element of $\mathcal{P}^n(E)$ is a finite sum of functions of the form

$$p(t) = \varphi_1(t) \cdots \varphi_n(t), \quad t \in E,$$

where each φ_i is a continuous linear functional. Let $\mathscr{P}^0(E)$ be the vector space of all constant real-valued functions. Let $\mathscr{P}(E)$ be the vector space of all continuous polynomials of finite type on E. An element $p \in \mathscr{P}(E)$ is by definition of the form

$$p = \sum_{k=0}^{n} p_k$$

for some n = 0, 1, 2, 3, ..., where each polynomial $p_k \in \mathscr{P}^k(E)$, k = 0, 1, ..., n. Let $A = \{\varphi \in C(S; \mathbb{R}); \varphi p \in \mathscr{P}(E), \text{ for all } p \in \mathscr{P}(E)\}$. Clearly, if φ is the restriction to S of some element of the dual space E^* , then $\varphi \in A$. By the Hahn-Banach Theorem, A is then separating over S. Since $\mathscr{P}(E)$ contains all the constant real-valued functions, it follows from Theorem 2, that $\mathscr{P}(E)$ is dense in $C(S; \mathbb{R})$.

EXAMPLE 3. (Pelczynski [10]). Let S be a compact Hausdorff space and let E be a normed space over \mathbb{R} . Let $W \subset C(S; E)$ be a *polynomial algebra*, i.e., a vector subspace such that for each $g, h \in W$ and $\varphi^* \in E^*$ $(E^* \text{ is the dual of } E)$ the mapping $s \mapsto \varphi^*(g(s))f(s)$ belongs to W.

THEOREM 5. For any polynomial algebra $W \subset C(S; E)$, the following are necessary and sufficient conditions for W to be dense in C(S; E):

(1) for any pair of distinct points, x and y, of S there is some $g \in W$ such that $g(x) \neq g(y)$;

(2) for any $x \in S$, $v \in E$, and $\varepsilon > 0$, there is some $g \in W$ such that $||g(x) - v|| < \varepsilon$.

Proof. The conditions are easily seen to be necessary. Conversely assume (1) and (2) are true. Let

$$A = \{ \varphi \in C(S; \mathbb{R}) ; \varphi g \in W, \text{ for all } g \in W \}.$$

If $x \neq y$ are given, choose $g \in W$ such that $g(x) \neq g(y)$. By the Hahn-Banach theorem, there is some $\varphi^* \in E^*$ such that $\varphi^*(g(x)) \neq \varphi^*(g(y))$. Let $\varphi(s) = \varphi^*(g(s))$ for all $s \in S$. Now, for each $h \in W$, the mapping $\varphi(s)h(s) = \varphi^*(g(s))h(s)$, $s \in S$, belongs to W. Hence $\varphi \in A$

and $\varphi(x) \neq \varphi(y)$, and so A is separating over S. It remains to apply Theorem 3.

Notice that, if the polynomial algebra W also satisfies the condition that $s \mapsto \varphi^*(g(s))v$ belongs to W, for every $g \in W$, $v \in E$, and $\varphi^* \in E^*$, then (2) is equivalent to

(3) for every
$$x \in S$$
, there is some $g \in W$ such that $g(x) \neq 0$.

In particular, if $W \subset C(S; E)$ is a polynomial algebra that separates the points (condition (1)) and contains the constant mappings, then W is uniformly dense.

If S is a compact subset of a real normed space G and E is another normed space over \mathbb{R} , then $\mathcal{P}(G) \otimes E$ is such that its restriction to S is a polynomial algebra in C(S; E) that separates the points of S and contains the constant mappings. The elements $\mathcal{P}(G) \otimes E$ are called continuous polynomials of finite type from G into E.

4. SIMULTANEOUS APPROXIMATION AND INTERPOLATION

We can apply our Theorem 1 to get results on simultaneous approximation and interpolation of vector-valued functions. Let us say that a subset $A \subset C(S; E)$ is an interpolating family for C(S; E) if, given any finite subset $F \subset S$ and any $f \in C(S; E)$, there exists $g \in A$ such that f(x) = g(x) for all $x \in F$.

THEOREM 6. Let $A \subset C(S; E)$ be an interpolating family such that the set of multipliers of A separates the points of S. Then, for every $f \in C(S; E)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in A$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$. In particular, A is uniformly dense in C(S; E).

Proof. Define $W = \{g \in A; f(x) = g(x) \text{ for all } x \in F\}$. Since A is an interpolating family, $W \neq \emptyset$. Now it is easy to verify that each multiplier of A is also a multiplier of W. Hence, by Theorem 1, it suffices to show that, for each $x \in S$, there exists $g_x \in W$ such that $||f(x) - g_x(x)|| < \varepsilon$. Consider the finite set $F \cup \{x\}$. Since A is an interpolating family for C(S; E), there exists $g_x \in A$ such that $f(t) = g_x(t)$ for all $t \in F \cup \{x\}$. In particular, $f(t) = g_x(t)$ for all $t \in F$. Hence $g_x \in W$. On the other hand $f(x) = g_x(x)$ implies $||f(x) - g_x(x)|| = 0 < \varepsilon$. By Theorem 1, there exists $g \in W$ such that $||f - g|| < \varepsilon$, and $g \in W$ implies $g \in A$ and g(t) = f(t) for all $t \in F$.

Remark. When $E = \mathbb{K}$, then the conclusion of Theorem 6 is true under the hypothesis that $A \subset C(S; \mathbb{K})$ is a dense linear subspace. See

Deutsch [4]. This poses the question of finding dense linear subspaces of C(S; E) for which the conclusion of Theorem 6 is valid, i.e., for which simultaneous approximation and interpolation is possible.

THEOREM 7. Let $W \subset C(S; E)$ be a linear subspace such that

$$A = \{ \varphi \circ g ; \varphi \in E^*, g \in W \}$$

is dense in $C(S; \mathbb{K})$ and $A \otimes E \subset W$. Then, for every $f \in C(S; E)$, every $\varepsilon > 0$ and every finite subset $F \subset S$, there exists $g \in W$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in F$.

Proof. Case 1. $F = \emptyset$. By Theorem 5, the space $C(S; \mathbb{K}) \otimes E$ is dense in C(S; E). Hence there is some $g \in C(S; \mathbb{K}) \otimes E$ such that $||f - g|| < \varepsilon/2$. Let

$$g = \sum_{k=1}^m h_k v_k,$$

where $h_i \in C(S; \mathbb{K}), v_i \in E, i = 1, ..., m$. Let $\varphi_1, ..., \varphi_m \in E^*$ and $g_1, ..., g_m \in W$ be such that $\|\varphi_i \circ g_i - h_i\| < \delta$, where $\delta > 0$ has been chosen so that $\delta \sum_{i=1}^m \|v_i\| < \epsilon/2$. Then $w = \sum_{k=1}^m (\varphi_k \circ g_k) v_k$ belongs to $A \otimes E \subset W$ and $\|w - f\| < \epsilon$.

Case 2. $F = \{x_1, \ldots, x_n\} \neq \emptyset$. We first remark that A is an interpolating family for $C(S; \mathbb{K})$. Indeed, if we define $T: C(S; \mathbb{K}) \to \mathbb{K}^n$ by

$$Tg = (g(x_1), \ldots, g(x_n))$$

for each $g \in C(S; \mathbb{K})$, then by density of A and continuity of T, we have

$$T(C(S;\mathbb{K})) = T(\overline{A}) \subset \overline{T(A)} = T(A),$$

where the last equality is a consequence of the fact that T(A) is a linear subspace of \mathbb{K}^n , because A is a linear subspace of $C(S; \mathbb{K})$. Let $a_1, \ldots, a_n \in A$ be such that

$$a_i(x_j) = \delta_{ij}, \quad 1 \leq i, j \leq n.$$

Choose $\delta > 0$ so that $\delta(1 + \sum_{i=1}^{n} ||a_i||) < \varepsilon$. By Case 1, W is dense in C(S; E). Hence there is some $g_1 \in W$ such that $||f - g_1|| < \delta$. Let

$$v_i = f(x_i) - g_1(x_i), \quad 1 \le i \le n.$$

Since $A \otimes E \subset W$, it follows that

$$g_2(x) = \sum_{i=1}^n a_i(x)v_i, \qquad x \in S,$$

belongs to W. Notice that $g_2(x_j) = v_j$ for all $1 \le j \le n$. Hence $g(x_j) = f(x_j)$, for all $1 \le j \le n$, if $g \in W$ is defined to be $g_1 + g_2$. On the other hand,

$$\|f-g\|<\delta+\|g_2\|<\delta+\delta\sum_{i=1}^n\|a_i\|<\varepsilon.$$

COROLLARY 4. Let $W \subset C(S; E)$ be a dense linear subspace such that $A \otimes E \subset W$, where

$$A = \{ \varphi \circ g ; \varphi \in E^*, g \in W \}.$$

Then, simultaneous approximation and interpolation from W is possible.

Proof. By Theorem 7, it suffices to show that A is dense in $C(S; \mathbb{K})$. Let $f \in C(S; \mathbb{K})$ and $\varepsilon > 0$ be given. Choose $v \in E$ and $\varphi \in E^*$ such that $\|\varphi\| \le 1$ and $\varphi(v) = 1$. Let g(x) = f(x)v, for all $x \in S$. Then, by density of W, there is some $w \in W$ such that $\|w - g\| < \varepsilon$. Let $h = \varphi \circ w$. Then $h \in A$ and $|h(x) - f(x)| = |\varphi(w(x)) - f(x)\varphi(v)| = |\varphi(w(x)) - \varphi(f(x)v)| = |\varphi(w(x) - g(x))| \le \|\varphi\| \cdot \|w(x) - g(x)\| < \varepsilon$, for all $x \in S$.

COROLLARY 5. Let F and E be two real normed spaces, and let $S \subset F$ be a compact subset. Then, simultaneous approximation and interpolation is possible from the space of continuous polynomials of finite type from F into E.

Proof. Let $W \subset C(S; E)$ be the restriction to S of the space $\mathscr{P}(F) \otimes E$. (For the definition of $\mathscr{P}(F)$ see Example 2.) Notice that $A = \{\varphi \circ g; \varphi \in E^*, g \in W\}$ is the restriction of $\mathscr{P}(F)$ to S. Hence $A \otimes E \subset W$. We saw in Example 3 that the polynomial algebra W is dense in C(S; E). It remains to apply the previous corollary.

5. The Non-Separating Case

A very simple modification of the proof of Lemma 3 yields the following *non-separating* version of it.

LEMMA 4. Let $M \subset C((S; [0, 1]))$ be a subset with property V. Let $x \in S$ and let N be an open neighborhood of $[x]_M$ in S. There exists an open

neighborhood U of $[x]_M$, contained in N, such that, for each $0 < \delta < 1/2$, there is an element $\varphi \in M$ such that

- (1) $\varphi(t) > 1 \delta$, for all $t \in U$,
- (2) $\varphi(t) < \delta$, for all $t \notin N$.

In the statement of Lemma 4 we have used the following notation. For each $x \in S$, the set $[x]_M$ is the equivalence class of the point x for the following equivalence relation: $x \equiv y \pmod{M}$ if, and only if, $\varphi(x) = \varphi(y)$, for all $\varphi \in M$. In the same way that Lemma 3 implies Theorem 1, Lemma 4 implies the following non-separating version of Theorem 1.

THEOREM 8. Let W be a non-empty subset C(S; E), and let M be the set of all multipliers of W. Let $f \in C(S; E)$ and $\varepsilon > 0$ be given. The following statements are equivalent:

(1) there is some $g \in W$ such that $||f - g|| < \varepsilon$;

(2) for each $x \in S$, there is some $g_x \in W$ such that $||f(t) - g_x(t)|| < \varepsilon$, for all $t \in [x]_M$.

Analogously, in the same way that Theorem 2 follows from Theorem 1, the following result follows from Theorem 8.

THEOREM 9. Let W be a non-empty subset of C(S; E), and let M be the set of all multipliers of W. For each $f \in C(S; E)$ there is some $x \in S$ such that

$$\operatorname{dist}(f;W) = \operatorname{dist}(f[x]_M;W[x]_M).$$

In the statement above we have used the following notation: $f[x]_M$ stands for the restriction of f to the compact subset $[x]_M \subset S$. Similarly, $W[x]_M$ denotes the set $\{g[x]_M; g \in W\}$ which is contained in the space $C([x]_M; E)$.

ACKNOWLEDGMENTS

The author thanks Professor Bruno Brosowski for many helpful conversations on the subject of the present paper. They were held while the author was visiting the J.-W. Goethe Universität at Frankfurt a. Main, Germany, during the Winter term 1990. The visit was made possible by a travel grant from FAPESP (São Paulo, Brazil) and the financial support of GMD (Germany), through the GMD-CNPq cooperation agreement. He also thanks Professor F. Deutsch for pertinent remarks and Professor E. W. Cheney for calling his attention to the paper [4] of F. Deutsch.

REFERENCES

- 1. B. BROSOWSKI AND F. DEUTSCH, An elementary proof of the Stone-Weierstrass theorem, *Proc. Amer. Math. Soc.* 81 (1981), 89-92.
- 2. R. B. BURCKEL, Bishop's Stone-Weierstrass theorem, Amer. Math. Monthly 91 (1984), 22-32.
- 3. M. CHAO-LIN, Sur l'approximation uniforme des fonctions continues, C. R. Acad. Sci. Paris Sér. I. Math. 301, No. 7 (1985), 349-350.
- 4. F. DEUTSCH, Simultaneous interpolation and approximation in linear topological spaces, *SIAM J. Appl. Math.* 14 (1966), 1180-1190.
- 5. A. J. ELLIS, Some approximation results for function spaces, Indag. Math. 42 (1980), 125-130.
- 6. D. FEYEL AND A. DE LA PRADELLE, Sur certaines extensions du Théorème d'Approximation de Bernstein, *Pacific J. Math.* 115 (1984), 81-89.
- 7. R. I. JEWETT, A variation on the Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 14 (1963), 690-693.
- S. MACHADO, On Bishop's generalization of the Weierstrass-Stone theorem, Indag. Math. 39 (1977), 218-224.
- 9. L. NACHBIN, "Elements of Approximation Theory," Van Nostrand, Princeton, NJ, 1967; reprinted by R. Krieger, 1976.
- 10. A. PELCZYNSKI, A generalization of Stone's theorem on approximation, Bull. Acad. Polonaise Sci. Cl. III 5 (1957), 105-107.
- J. B. PROLLA, "Approximation of Vector Valued Functions," North-Holland, Amsterdam, 1977.
- T. J. RANSFORD, A short elementary proof of the Bishop-Stone-Weierstrass theorem, Math. Proc. Cambridge Philos. Soc. 96 (1984), 309-311.
- 13. W. RUDIN, "Real and Complex Analysis," McGraw-Hill, New York, 1970.
- 14. J. VON NEUMANN, Probabilistic logics and the synthesis of reliable organisms from unreliable components, in "Automata Studies" (C. E. Shannon and J. McCarthy, Eds.), pp. 43-98, Annals of Math. Studies, Vol. 34, Princeton Univ. Press, Princeton, NJ, 1956.
- 15. J. VON NEUMANN, Probabilistic logics and the synthesis of reliable organisms from unreliable components, *in* "Collected Works. Vol. V. Design of Computers, Theory of Automata and Numerical Analysis," Pergamon, Oxford/London, 1961.